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a b s t r a c t 

We provide evidence that catastrophic bifurcation breakdowns or transitions, preceded by early warning 

signs such as flickering phenomena, are present on notoriously unpredictable financial markets. For this 

we construct robust indicators of catastrophic dynamical slowing down and apply these to identify hall- 

marks of dynamical catastrophic bifurcation transitions. This is done using daily closing index records for 

the representative examples of financial markets of small and mid to large capitalisations experiencing a 

speculative bubble induced by the worldwide financial crisis of 2007. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 1 

Discontinuous phase transitions in complex systems together 2 

with critical phenomena are topics of canonical importance in sta- 3 

tistical thermodynamics [3,11,21,33,52,55] . Much as in liquid gas 4 

or magnetic systems, during the evolution of complex systems 5 

undergoing such phase transitions, one may observe catastrophic 6 

breakdowns preceded by flickering phenomenon. These types of 7 

discontinuous or critical dynamics are generic illustrations of how 8 

small changes can lead to dramatic consequences. Such regime 9 

shifts occur as a sophisticated non-trivial phenomenon caused by 10 

a catastrophic bifurcation. This means that a catastrophe or tipping 11 
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point [5,22,55] exists, at which a sudden shift of the system to a 12 

contrasting regime may occur. 1 13 

Arguably, the effects of the critical and catastrophic slowing 14 

down are the most refined indicators of whether a system is ap- 15 

proaching a critical point or a tipping point – a tipping point 16 

being a synonym for a catastrophic threshold, located at a catas- 17 

trophic bifurcation transition [6,8,9,19,39] . The problem of whether 18 

early-warning signals in the form of critical or catastrophic slow- 19 

ing down phenomena such as those observed in multiple physi- 20 

cal systems [33,52] are present on financial markets was posed by 21 

Scheffer et al. [53] . Recently, an original approach was put forward 22 

by Haldane and May [20] , which models banking networks as a 23 

banking ecosystem by analogy with nature’s ecosystems. Such an 24 

approach can offer a valid insight into the financial sector [24,34] . 25 

1 For instance, such sudden shifts (or jump discontinuities) of magnetization plot- 

ted versus the magnetic field were already found in critical fields, in our ear- 

lier work [32] , where we studied the influence of lattice ordering on diffusion 

properties. 
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Indeed, one of the most important attainments of the catastrophe 26 

theory in the context of economics appears to be in encompass- 27 

ing the concept of complexity. This viewpoint has already been 28 

adopted within various economical sectors [1,4,18,51,64–66] . 29 

The classification of crises as bifurcations between a stable 30 

regime and a novel regime provides a first step towards inden- 31 

tifying signatures which could be used for prediction ( [55] and 32 

refs. therein). Hence, the problem of the existence of tipping points 33 

in financial markets is a heavily researched area. This is because 34 

the discovery of predictability, inevitably leads to its elimina- 35 

tion, according to one of the most fundamental financial market 36 

paradigms. This paradigm states that as a profit can be made (for 37 

instance, from predictability), the financial market gradually anni- 38 

hilates such an arbitrage opportunity. Yet, the complex behaviour 39 

of financial markets, together with their evolutionary character, 40 

continues to prove that it is inherently difficult to identify predic- 41 

tive markers. This in effect posits that such an arbitrage opportu- 42 

nity is routinely present on financial markets and manifested in 43 

emergent collective behaviours. 44 

Recently, the economists Nawrocki and Vaga used nonlinear 45 

analysis of time series of returns to describe bifurcations on fi- 46 

nancial markets [56] . Our approach, presented here, is based on 47 

the linear and bilinear analysis of detrended indices of quotations. 48 

This is because in our case we describe the linear expansion of 49 

the stochastic dynamic equation in the vicinity of an equilibrium 50 

state (stable or unstable) of the system. Hence, the two approaches 51 

should be understood to be complementary. In either case, the ex- 52 

istence of the bifurcation transition is not contrary to the above- 53 

mentioned market paradigm because, to make a definite predic- 54 

tion, the specific moment of transition must be known. However, 55 

such a moment is uncertain (as it is a random variable). 56 

There is a well-known controversy, which is the prime inspi- 57 

ration for our work, concerning two-state transitions on finan- 58 

cial markets. Namely, Plerou et al. [41,42] observed two-phase be- 59 

haviour on financial markets by using empirical transactions and 60 

quotes within the intraday data for the 116 most actively traded 61 

US stocks during the two-year period of 1994–1995. By examin- 62 

ing the fluctuation of volume imbalance, that is by using some 63 

conditional probability distribution of the volume imbalance, they 64 

found a change in this distribution from uni- to bimodal. This 65 

corresponds with a market shift from an equilibrium to an out- 66 

of-equilibrium state, where these two different states were inter- 67 

preted as distinct phases. 68 

In contradiction, Potters and Bouchaud [43] pointed out that 69 

the two-phase behaviour of the above-mentioned conditional dis- 70 

tribution is a direct consequence of generic statistical properties of 71 

the volume traded, and is not a real two-phase phenomenon. In 72 

their work on the trading volume, [38] indicated that the bifurca- 73 

tion phenomenon is an artefact of the distribution of trade sizes, 74 

which follows a power-law distribution with an exponent belong- 75 

ing to the Lévy stable domain. Further, very recently, Filimonov and 76 

Sornette [14] suggested that the trend switching phenomena in fi- 77 

nancial markets considered in [44–49,58] has a spurious character. 78 

They argued that this character stems from the selection of price 79 

peaks, which imposes a condition on the statistics of price change 80 

and of trade volumes, skewing their distributions. 81 

Nevertheless, the two-phase phenomenon was again examined 82 

in the DAX financial index in [67] , using minority games and dy- 83 

namic herding models. They found that this phenomenon is a sig- 84 

nificant characteristic of financial dynamics, independent of volatil- 85 

ity clustering. Furthermore, Jiang et al. [23] observed the bifurca- 86 

tion phenomenon for the Hang-Seng index as non-universal and 87 

requiring specific conditions. 88 

The principal goal of our work is to identify and describe the 89 

main empirical facts indicating the existence of possible catas- 90 

trophic bifurcation transitions (CBT) in stock markets of small and 91 

mid to large capitalisations. In this work, we consider the bi- 92 

furcation phenomenon by utilizing the concept of bistability [60] 93 

and focusing our attention on the unconditional or joint proper- 94 

ties of the catastrophic bifurcation. We further develop and evalu- 95 

ate a number of principal metrics associated with catastrophic bi- 96 

furcation transitions. Several of them have been previously posed 97 

and considered for financial markets ( [2,15,25,35,37,50,54] and refs. 98 

therein). In particular, we identify hallmarks of the catastrophic bi- 99 

furcation transition by verifying relevant fundamental indicators, 100 

for WIG, 2 DAX, and DJIA daily speculative bubbles on the Warsaw 101 

Stock Exchange, Frankfurter Wertpapierbörse, and New York Stock 102 

Exchange. That is, we consider the stock markets’ speculative bub- 103 

bles during the 2007 worldwide financial crisis for, respectively, 104 

small and mid to large capitalisations (cf. Fig. 1 ). 105 

We concentrate on the analysis of daily financial market data, 106 

as we consider that daily data is the most representative as it 107 

contains evidence of both the high and the low-frequency trad- 108 

ing. That is, daily closing data has an intermediate character con- 109 

taining information both from the intraday trading and from the 110 

less frequent, longer-term interday trading span. In addition, be- 111 

cause of the existence of well-known intraday patterns, detrend- 112 

ing procedures are better established for the daily data than for 113 

the intraday case. Both the bullish and the bearish sides of the 114 

peaks considered are detrended using a generalised exponential (or 115 

Mittag-Leffler function) decorated by oscillatory behaviour (for de- 116 

tails see Appendix A ). This is because such a function better fits 117 

the peaks considered in this work than the commonly used log- 118 

periodic function [10,13,59] . 119 

The content of the paper is as follows. Section 2 is devoted 120 

to the empirical analysis of daily data originating from three 121 

typical stock markets of small, mid and large capitalisations. In 122 

Section 3 , we explain how indicators arise when the system ap- 123 

proaches a catastrophic bifurcation threshold. Section 4 contains 124 

concluding remarks. Detailed supplementary methodological con- 125 

siderations are presented in the appendices. 126 

2. Analysis of empirical data 127 

2.1. Time series and detrending 128 

The conceptual strategy of our approach is separately to con- 129 

sider the deterministic components of both the trend and the drift 130 

effects, which makes viable the analysis of determinism contained 131 

in the empirical time series. We also assume that the detrending 132 

of the time series eliminates non-stationarity. 133 

The analysis of empirical data we perform on the bubbles 134 

(peaks) of WIG, DAX and DJIA indices covers the 2007 worldwide 135 

financial crisis (cf. the erratic curves in Fig. 1 (a), (b), (c)). The 136 

shapes of WIG, DAX, and DJIA peaks are strikingly similar. This 137 

suggests an underlying generic dynamical behaviour of European 138 

stock market evolution. In particular, the shape of bull markets (or 139 

booms) represented by the left-hand side of these peaks appears 140 

to be typical on stock exchanges of small to large capitalisations, as 141 

they contain very characteristic zigzags (denoted by circles). These 142 

bull markets are the principal subject of interest to us. 143 

In order to model the deterministic long-term (multi-year) 144 

trend of these empirical bull markets – an observable long-term 145 

deterministic pattern in the empirical data caused by the herd ef- 146 

fect, 3 we here use an easily interpretable relaxation function de- 147 

fined by Eq. (A.1) , which is a solution to a dynamic equation 148 

2 The index WIG (Warszawski Indeks Giełdowy) is the main index of the Warsaw 

Stock Exchange, which is of a small size. 
3 Trend (e.g. the price trend) results from the feedback mechanism between 

traders and the market, which can therefore be considered to be a complex self- 

organizing system [27] and refs. therein. 

Please cite this article as: M. Kozłowska et al., Dynamic bifurcations on financial markets, Chaos, Solitons and Fractals (2016), 

http://dx.doi.org/10.1016/j.chaos.2016.03.005 

http://dx.doi.org/10.1016/j.chaos.2016.03.005


M. Kozłowska et al. / Chaos, Solitons and Fractals xxx (2016) xxx–xxx 3 

ARTICLE IN PRESS 

JID: CHAOS [m5G; March 12, 2016;21:52 ] 

a

b

c

Fig. 1. Well-formed empirical peaks (the bubbles defined by erratic curves) of: 

(a) WIG index beginning on 6 February, 2004 (the –269th ( = 24 80–274 9)) trad- 

ing day (td) on the Warsaw Stock Exchange) and ending on 18 May, 2009 (the 

1326th( = 4075–2749) td), (b) DAX index beginning on 6 February, 2004 (the - 

269th( = 24 80–274 9) td) trading day (td) on the Frankfurter Wertpapierbörse and 

ending on 18 May, 2009 (the 1326th ( = 4075–2749) td), and (c) DJIA index begin- 

ning on 16 March, 2005 (the 27251st td on the New York Stock Exchange) and end- 

ing on 9 June, 2009 (the 28315th td). The solid curves represent the best theoret- 

ical long-term (multi-year) trend [28] , defined by Eq. (A.1) , found from the fit to 

the bull market (left-hand side of the peak). The thin solid vertical line denotes the 

position of the local maximum placed for: (a) 2006-05-05 (the 576th( = 3325–2749) 

td); (b) 26 April, 2006 (the 676th( = 11676–110 0 0) td); and (c) 14 February, 2007 

(the 483rd( = 27733–27250) td). These maxima belong to the zigzags marked by the 

circles. These zigzags are emphasized by the inset plots, as they are the main sub- 

ject of interest to us. Strongly oscillating trends (also solid curves) for bear markets 

(the right-hand side of the peaks) are plotted only for completeness. 

describing the relaxation of a viscoelastic market (‘biopolymer’) (cf. 149 

Appendix A and [29] ). 150 

The trend and the drift each have different physical origins and 151 

operate at various time horizons, which makes their determination 152 

and analysis tractable. However, a generic problem of the decom- 153 

position of the deterministic part of time series for trend and drift 154 

components in a unique way is beyond the scope of this work and 155 

remains an open problem. Instead, we accept some level of trend 156 

(here given, by Eq. (A.1) – see Appendix A for details) if the coeffi- 157 

cient of determination R 2 and the P-value assume the best values 158 

in comparison with the corresponding ones obtained from the fits 159 

of alternative trend functions. 4 160 

By subtracting the trend (A.1) , we obtain the detrended time 161 

series (cf. Fig. 2 ) consisting of the deterministic drift and noise – 162 

the extraction of the drift component from the time series and its 163 

systematic analysis are essential for our purpose. 164 

2.2. Variance of detrended time series 165 

For our three different time series, the time dependence of suf- 166 

ficiently sensitive estimators of variance, defined within the mov- 167 

ing (or scanning) time window of one month width (or twenty 168 

trading days 5 ) is shown in Fig. 3 . That is, we obtained these es- 169 

timators from the corresponding separate scans of the empirical 170 

time series. These scans were made by using the above-mentioned 171 

time window of fixed width and also a fixed scanning time step 172 

(again of one trading month). Indeed, within this window the vari- 173 

ance estimator was calculated for each temporal position of the 174 

time window. 175 

Notably, the variance estimators of time series show a sudden 176 

strong increase in the range of downturns (marked by the circles 177 

in Fig. 1 ), creating local peaks of these estimators in the form of 178 

spikes (cf. three plots in Fig. 3 ). The centres of these spikes are in- 179 

dicated in the plots by the vertical dashed lines. The existence of a 180 

spike is one of the principal empirical symptoms of a catastrophic 181 

(or possibly even critical) slowing down. Henceforth in the text, we 182 

refer to these spikes as catastrophic spikes. 183 

Catastrophic spikes are preceded by well-formed local peaks of 184 

variance estimators of much smaller amplitude (cf. Fig. 3 ). This be- 185 

haviour clearly manifests the so-called flickering phenomenon [53] . 186 

This effect can happen, for instance, if the system enters the in- 187 

termediate bistable (bifurcation) region placed between two tip- 188 

ping points. Subsequently, the system stochastically moves up and 189 

down, either between the basins of attraction of two alternative at- 190 

tractors, or between an attractor and a repeller. The two possibil- 191 

ities are defined by stable/stable or stable/unstable pairs of equi- 192 

librium states. Such behaviour can also be considered to be an 193 

early warning of catastrophe. The flickering of the variance estima- 194 

tor (although less intense), together with intermittencies shrinking 195 

in time, is observed for even earlier time intervals (cf. the upper 196 

plot in Fig. 3 ). The flickering phenomenon is considered in detail 197 

in Sections. 2.3 and 2.4 . 198 

2.3. Recovery rate 199 

As typical behaviour, Fig. 4 plots detrended time series ele- 200 

ment or process x t against the preceding detrended time series 201 

one, x t−1 , for instance, for the (detrended) time-dependent WIG 202 

index. Two plots of short (one-month) subseries of essentially dif- 203 

ferent empirical data sets are shown in Fig. 4 as an example. 204 

Each subseries consists of 20 successive pairs of elements (x t−1 , x t ) 205 

4 A complementary popular candidate for the trend, also having a well- 

interpreted physical origin, is the log-periodic oscillation ( [27] and refs. therein). 

However, for empirical bull markets in our data, it is worse than the fit of the 

trend model used by us, which has a smaller R 2 (expressed, as usual, as the ratio 

of the explained (theoretical) variance to the sample variance). Notably, R 2 is the 

measure of concordance most often used. Unfortunately, all hitherto known trends 

are nonuniversal and can be applied only to well-defined long-term bubbles. Also 

trends given in the form of polynomials, quite often used in econometry, result in 

worse statistic characteristics of the fits in our data. 
5 Twenty trading days is considered to be one trading month. The risk-free period 

of the Central Bank is likewise one month. 
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Fig. 2. The detrended time-dependent index WIG (the time series of WIG or the process x t measured in points [p]), which constitutes the basis for further considerations. 

The characteristic date when the process x t assumes its largest value is denoted by the vertical dashed line. The same date also defines the position of the index WIG’s local 

maximum (cf. Fig. 1 (a)). The remaining indices (DAX and DJIA) show analogous behaviour and therefore, they are not presented in the figure. 

a

b

c

Fig. 3. Plots of the variance estimators of the detrended indices – time series of 

WIG, DAX and DJIA (these time series are shown in the three corresponding plots 

in Fig. 2 ). Here, the time ranges from 2005-04-15 to 2006-11-15 for WIG (plot 

(a)), from 2005-08-18 to 2006-10-19 for DAX (plot (b)), and from 2006-07-21 to 

2007-05-09 for DJIA (plot (c)). The vertical dashed lines denote the positions of the 

spikes’ centres. 

Fig. 4. The detrended successive WIG time series x t vs. x t−1 for twenty pairs (or 

one month) ranging from t = 522 to 541 [td-2749] (black circles and fitted black 

dotted-dashed straight line) and from t = 542 to 561 [td-2749] (red inverted trian- 

gles and fitted red solid straight line) time steps. The slopes of the fitted curves, i.e. 

autoregressive coefficient of the first-order AR (1), almost equal 0.65 and 0.95, re- 

spectively. These results give −λ ≈ 0 . 35 and −λ ≈ 0 . 05 , respectively. (See also plot 

(a) in Fig. 5 .) Furthermore, respective values of the shift coefficient or autoregres- 

sive coefficient of the zero-order b = A (0) , although relatively small, are well distin- 

guishable in the inset plot at x t−1 = 0 . For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article. 

extending from t = 522 to t = 541 [td-2749] 6 trading days (black 206 

circles) and from t = 542 to t = 561 [td-2749] trading days (red in- 207 

verted triangles), respectively. The slopes of the straight lines, fit- 208 

ted separately to both data sets, give two different values of the 209 

linear or the first-order autoregression coefficient AR (1). Hence, 210 

these slopes give values of coefficient λ = AR (1) − 1 , where λ is 211 

a derivative of the nonlinear drift term, f ( x t ; P ) (here P is a driv- 212 

ing or control parameter), over the time series variable, x t , at a 213 

fixed point x ∗, present in the linearized discrete stochastic dy- 214 

namic Eqs. (B.6) and (B.7) . This linearization is a generic property 215 

of the system which has a fixed point or contains an equilibrium 216 

(stable or unstable). These equations are valid in the vicinity of 217 

any fixed point, in particular, in the vicinity of the most interest- 218 

ing tipping point (or the catastrophic bifurcation threshold – cf. 219 

6 This notation means that the origin of coordinates of plot (a) is shifted by 2749 

[td] relative to the beginning of quotation on the Warsaw Stock Exchange. Analo- 

gous situations concern German Stock Exchange (plot (b)) and NYSE (plot (c)) 
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c

b

a

Fig. 5. The recovery rate −λ(≥ 0) vs. time calculated by using two different for- 

mulas: (i) −λ = 1 − AR (1) (blue dots with error bars) and (ii) −λ = 1 − ACF (1) (red 

dots without error bars). The two curves have similar shapes in time (they are con- 

cave where data resolution equals 2 [td] to make the plots better visible) having 

local minima for −λ ≈ 0 . 0 . As these minima are reached from their positive sides, 

such a behaviour leads to the slowing down of the system’s return to the stable 

equilibrium (see Appendix B for details). The vertical dashed lines denote in plots 

(a), (b), and (c) (as usual) the position of tipping points. For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article. 

Appendix B ). Furthermore, different values of the shift coefficient 220 

b(= A (0) , being a zero-order autoregression coefficient), although 221 

relatively small, are well distinguishable in the inset plot. 222 

From the fits mentioned above, AR (1) coefficient almost equal 223 

to 0.95 is found (cf. the slope of the red solid straight line, shown 224 

in Fig. 4 , fitted to the red inverted triangles – this corresponds to 225 

the time interval ranging from t = 542 to t = 561 [td-2749] shown 226 

in Fig. 5 (a)) for the subseries containing the catastrophic bifurca- 227 

tion threshold (marked by the dashed vertical straight lines plotted 228 

in Figs. 2 and 3 ). In Fig. 5 (a) this slope gives the −λ represented 229 

by the blue dot with error bar placed at time t = 542 [td-2749] 230 

on the left-hand side of the catastrophic bifurcation threshold. The 231 

black dashed straight line is shown for comparison in Fig. 4 , hav- 232 

ing a distinctly lower slope AR (1) ≈ 0.65, which corresponds to the 233 

time interval ranging from t = 522 to t = 541 [td-2749]. Hence, the 234 

corresponding −λ ≈ 0 . 35 is represented in the same figure by the 235 

blue dot with the error bar placed at time t = 522 [td-2749], also 236 

on the left-hand side of the catastrophic bifurcation threshold. The 237 

origin of the red dots (without error bars) obtained using a com- 238 

plementary approach is described below. 239 

Fig. 6. Empirical curves (small red circles joined by the segments of red lines pre- 

sented in plots (a), (b), and (c)), representing the (mechanical) equilibrium states 

defined by the values of x ∗(= −b/λ) vs. time (in trading days, td), where b and λ

were obtained from the empirical data for WIG, DAX, and DJIA (cf. Figs. 4 and 5 ). 

The flickering phenomenon, present prior to the catastrophic bifurcation threshold, 

is illustrated by the red curve directed by arrows which oscillate up and down be- 

tween red empirical data points located alternately on the dotted and solid black 

curves. This threshold is marked by the dashed vertical line indicated by an arrow 

termed ‘At’. The upper segment of the backward-folded curve is the solid one –

initially red with dots and then black. It is indicated by the arrow termed ‘Before’ 

and drawn schematically until the right tipping point denoted by the character ‘x’ 

(placed one day before the catastrophic bifurcation threshold). This upper segment 

is identified as a sequence of stable (mechanical) equilibrium states of the type 

x ∗1 ′′ (see Appendix C and Figs. 8–11 for details). The segment (denoted by the dot- 

ted curve) placed in the bistable region between two tipping points (the left tip- 

ping point is also denoted by the character ‘x’) consists of a sequence of unstable 

(mechanical) equilibrium states of the type x ∗1 ′ (see Appendix C and Figs. 8–11 for 

details). The lower segment (also denoted by the solid curve - initially black and 

then red) placed after the left tipping point is identified as a complementary se- 

quence of the stable (mechanical) equilibrium states, here of x ∗1 type (its part after 

the catastrophic bifurcation threshold is indicated by the arrow and termed ‘Af- 

ter’; see Appendix C and Figs. 8–11 for details). Remarkably, the dotted curve can 

be smoothly plotted between the two tipping points and over the empirical points. 

(An explanation about the construction of the backward folded curve is given in 

paragraph 2.4 ). For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article. 

In Appendix B , we prove that the autocorrelation function of 240 

the h th order, ACF ( h ), is expressed by the formula given in the 241 

second row in (B.10) . In fact, we here study a particular case of 242 

ACF (1) = AR (1) by a method complementary to that used above 243 

for the analysis of the coefficient AR (1). Namely, we apply the usual 244 

estimator, ACF EST (1), of ACF (1) for a given month (which is our time 245 
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Fig. 7. Three complementary plots concerning the same region placed before the 

first tipping point of the backward-folded curve (or empirical data, for instance, 

for DAX) denoted in Fig. 6 (b) by the character ‘x’. The (mechanical) equilibrium 

point 1 ′′ (= x ∗1 ′′ ) = 421.009, shown in the upper plot (a) as the single root of the 

equation f (x ; P) = 0 , is obtained directly from the empirical data (– the ordinate of 

this root shown in Fig. 6 (b) is the time = 665 [td-110 0 0]). The upper plot (a) shows 

the dependence of the force f ( x ; P ) (present in Eqs. (B.1) and (C.2) ) vs. x for the 

values of (relative) coefficients a 1 / a 0 = 1179.81, a 2 / a 0 = 278390 and a 3 / a 0 = -4.00948 

× 10 8 obtained in the C.4 (‘Case before the bistable region’) and common to all 

the plots (a), (b), and (c). In the middle plot (b) the corresponding potential, U ( x ; 

P ), is shown where the point 1” is the sole stable equilibrium. In the bottom plot 

(c), the equilibrium probability distribution, Pr ( x ; P ), given by Eq. (B.5) , is shown. 

Notably, variable x equals x ∗ only if x becomes a root of f . For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article. 

window where λ is an almost constant value), 246 

ACF EST (1) = 

1 

V ar(x t ) 

1 

T 

[ ( 

T ∑ 

t=1 

x t x t+1 

) 

− 1 

T 

( 

T ∑ 

t=1 

x t 

) ( 

T ∑ 

t=1 

x t+1 

) ] 

, 

(1) 

where T = 20 . Using this estimator, −λ is calculated and presented 247 

in Fig. 5 by the red dots (without error bars), which almost ev- 248 

Fig. 8. Three complementary plots concerning the same bifurcation (bistable) re- 

gion (denoted by the arrow ‘Before’ in Fig. 6 (b)) ahead of the catastrophic bifur- 

cation threshold, denoted there by the vertical dashed straight line. The (mechani- 

cal) equilibrium points x ∗1 = -626.473, x ∗1 ′ = -488.308 and x ∗1 ′′ = 278 . 92 , as roots of 

equation f (x ; P) = 0 (see Appendix C for details), are obtained directly from the em- 

pirical data (or backward-folded curve) shown there. The ordinates of these points 

(shown in Fig. 6 (b)) are times = 669, 670, and 671 [td-110 0 0], respectively. The 

upper plot (a) shows the dependence of the force, f ( x ; P ), (present in Eq. (B.1) ) vs. 

x for the values of the relative coefficients a 1 / a 0 = 835.861, a 2 / a 0 = -5022.94 and 

a 3 / a 0 = -8.53249 × 10 7 obtained in the C.2 (‘Case of the bistable region’) common to 

all the plots (a) –(c). In the middle plot (b) the corresponding bistable potential, U ( x ; 

P ), is shown. The points 1 and 1 ′ ′ are stable equilibria, while 1 ′ is an unstable one 

(hence, �x 1 , 1 ′′ = 905 . 393 ). In the bottom plot (c) the bistable equilibrium probabil- 

ity distribution, Pr ( x ; P ), given by Eq. (B.5) is shown. The inset plots better visualize 

the behaviour of f , U and Pr vs. x in a very restricted region containing the points 1 

and 1 ′ . Notably, variable x equals x ∗ only if x becomes a root of f . For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article. 

erywhere fall within the error bars, thus their time dependence is 249 

qualitatively similar, as expected. This result, together with the cor- 250 

responding one for the coefficient AR (1) (shown by blue dots with 251 

error bars in the same figure), is necessary to calculate equilibrium 252 

states (stable and unstable) defined in the next paragraph by the 253 

set of x ∗ values. 254 
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Fig. 9. Three complementary plots concerning the same bifurcation (bistable) re- 

gion at the catastrophic bifurcation threshold; the region is denoted by the arrow 

‘At’ in Fig. 6 (b). All the curves are plotted for the same values of the relative co- 

efficients a 1 /a 0 = −456 . 67 , a 2 /a 0 = 21359 . 70 and a 3 /a 0 = 7 . 87066 × 10 6 derived in 

C.1 (‘Case of the catastrophic bifurcation transition’) from the zeros of the f ( x ; P ) 

curve. Apparently, the curve f / | a 0 | vs. x in the upper plot (a) has a single twofold 

root x ∗1 ′ = x ∗1 ′′ = 278 . 92 (– the ordinate of this root shown in Fig. 6 (b) is the time 

= 675 [td-110 0 0]). This root, being the second tipping point, is denoted in Fig. 6 

by the character ‘x’ and placed in the immediate vicinity of the threshold. The first 

root x ∗1 = −101 . 17 is given directly by the empirical point placed on the threshold 

shown in Fig. 6 (b) (hence, �x 1 , 1 ′′ = 380 . 09 ). In the middle plot (b) the correspond- 

ing bistable potential, U ( x ; P ), is shown (for the same relative coefficients as for the 

upper plot). The points 1 and 1 ′ ′ are stable equilibria. In the bottom plot (c) the 

bistable equilibrium probability distribution, Pr ( x ; P ), given by Eq. (B.5) , is shown. 

The inset plots better visualize the behaviour of f , U and Pr vs. x in a very restricted 

region containing the point 1 ′ ′ . Notably, variable x equals x ∗ only if x becomes a 

root of f . For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article. 

The empirical data shown in Fig. 5 provide the recovery rate, 255 

−λ, “smiles” with heights of minimums equal zero (to a good ap- 256 

proximation). Notably, the most significant result is that the mini- 257 

mum of both curves is located at the same place, having (to good 258 

approximation) the same height. Some small differences between 259 

the two curves can (from this point of view) be neglected, particu- 260 

larly as we can roughly expect that red dots have error bars of the 261 

same order as blue dots. Indeed, the minimum of −λ is the source 262 

of a slowing down effect (see Appendix B for details). This effect is 263 

one of the necessary requirements (or signatures) for the existence 264 

of a phase transition, in particular, of the catastrophic bifurcation 265 

type. 266 

Our approach is justified by assuming that λ is a piecewise, al- 267 

most constant function of time, i.e., it is an almost fixed quantity 268 

for the monthly set of empirical data points. We assume the same 269 

for the shift coefficient b considered below. Hence, λ and b are 270 

slowly varying functions of time (counted in months) in compari- 271 

son with the process x t (counted in days). The difference in these 272 

two time scales plays a basic role in our considerations. 273 

2.4. Empirical catastrophic bifurcation transitions 274 

The shift coefficient b relates to the recovery rate −λ(> 0) and 275 

fixed point (root) x ∗ through the key equality b = −λx ∗ (see the 276 

second Equation in (B.7) ). Hence, x ∗ is plotted vs. time in Fig. 6 for 277 

three typical indices: (a) WIG, (b) DAX, and (c) DJIA. Apparently, 278 

sufficiently far before the catastrophic bifurcation threshold (de- 279 

noted by the vertical dashed straight lines in plots (a), (b), and (c)) 280 

and after it, the spontaneous reduction of error bars of the curve 281 

x ∗ vs. time ( t ) is observed together with the smoothing out of 282 

two substantially extended segments of this curve denoted by the 283 

terms ‘Before’ and ’After’, which can be identified as two evolving 284 

separable equilibrium states of the system. The significant jumps of 285 

empirical data points (leading to system instability) are seen solely 286 

within the region between these two. The range of instability is 287 

defined for plot (a) by points placed between time t = 557 and 288 

t = 565 , for plot (b) between time t = 670 and t = 674 , and for 289 

plot (c) between time t = 471 and t = 482 . These empirical facts 290 

are apparently of a rather universal nature, as they are consistently 291 

observed on typical stock markets of small, mid and large capitali- 292 

sations. 293 

The structure of the unstable region enables us to outline the 294 

backward folded curve – both its stable and unstable segments – 295 

which exposes the so-called flickering phenomenon. Positions of 296 

both tipping points (denoted by the character ‘x’) are defined solely 297 

schematically (in crude approximation) to better indicate the fold- 298 

ing effect. Although the location of the right tipping point is de- 299 

fined with one-day precision, the location of the left tipping point 300 

has about three days’ uncertainty. The vertical uncertainty of both 301 

tipping points can be assumed to be no greater than about 20 0 0 302 

to preserve the smooth character of the backward folded curve. 303 

That is, all backward folded curves, which could be drawn to serve 304 

as non-analytical eye guides, should be topologically equivalent. 305 

Therefore, it is possible to construct the backward folded eye-guide 306 

curves together with their tipping points as they are sufficiently 307 

limited by the spatial constraints. 308 

As indicated above, the precise location of the tipping points 309 

is of no importance to us. What is important is solely the spe- 310 

cific structure (shape) of the backward-folded curve, which pro- 311 

pels the dynamics over the unstable region. Indeed, the unstable 312 

segment of this curve consists of a sequence of states responsible 313 

for the flickering phenomena that is, for large oscillations across 314 

these states – in the case of the absence of an unstable segment, 315 

the flickering phenomena would be suppressed. 316 

Flickering is well pronounced in Fig. 6 , ahead of the negative 317 

catastrophic spikes evident in plots (a), (b), and (c) and defining 318 

the bistable regime. This flickering phenomenon appears within 319 

the bistable region, where the sequence of unstable (intermedi- 320 

ate) states or roots { x ∗
1 ′ } (see Appendix B and Appendix C for de- 321 

tails) placed on the hypothetic (dotted) curve causes the system 322 

to bounce between these states and the sequence of stable states 323 

{ x ∗
1 
} indicated on the hypothetical lower (solid) curve. Indeed, this 324 
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Fig. 10. Three complementary plots concerning the same region after the bifur- 

cation (bistable) threshold (denoted by the vertical dashed straight line); the re- 

gion was denoted in Fig. 6 (b) by the arrow ‘After’. All the curves were plotted for 

the same values of the relative coefficients a 1 /a 0 = −456 . 67 , a 2 /a 0 = 41709 . 50 and 

a 3 /a 0 = 6 . 1682 × 10 6 derived in C.3 (‘Case after the catastrophic bifurcation transi- 

tion’) from the zeros of f ( x ; P ) curve obtained from the empirical data shown in 

Fig. 6 (b). The curve f / | a 0 | vs. x in the upper plot (a) has a single root x ∗1 = −75 . 39 

(– the ordinate of this root shown in Fig. 6 (b) is the time = 680 [td-110 0 0]). In the 

middle plot (b) the corresponding potential, U ( x ; P ), is shown. Point 1 is a stable 

equilibrium. In the bottom plot (c), the equilibrium probability distribution, Pr ( x ; 

P ), given by Eq. (B.5) , is shown. Notably, variable x equals x ∗ only if x becomes a 

root of f . For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article. 

bounce effect can cause, for instance, oscillations in the variance 325 

ahead of the spikes shown in plots (a), (b), and (c) in Fig. 3 . We 326 

consider the existence of the flickering phenomenon and subse- 327 

quent spike between two rather flat sequences of states as a pos- 328 

sible result of a catastrophic bifurcation transition. This is dis- 329 

cussed in detail in B.3 (see Eq. (B.13) ). It should be emphasized 330 

that the three-phase sequence observed: ‘equilibrium–instability 331 

(or flickering)–equlibrium’ during the system evolution is essential 332 

Fig. 11. A comprehensive three-dimensional schematic view showing the origin of 

the flat backward-folded curve x ∗ vs. P placed on a (semi-transparent) green plane. 

This backward-folded curve originated as a section of the green plane with the 

wavy blue surface. The points denoted by 1 and 1 ′ ′ (white circles) are stable me- 

chanical equilibria located, respectively, on the left and right segments of this curve. 

The points denoted by 1 ′ (also white circles) are unstable mechanical equilibria lo- 

cated on the backward-folded segment of this curve. The catastrophic bifurcation 

transition from the equilibrium state 1 ′ ′ to 1 is indicated by the long red arrow. 

These particular points are placed on the catastrophic bifurcation curve (thicker 

than all other curves) located on the wavy blue surface. Note, that the singular be- 

haviour of the schematic backward-folded curve in the vicinity of the catastrophic 

bifurcation threshold (cf. in plots (a), (b), (c) in Fig. 6 ) is absent here. The impact of 

the noise ηt on the states x t and x ∗t is not visualized here. Notably, variable x be- 

comes x ∗ only if x becomes a root of f . For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article. 

for the formulation of a sound conjecture of the bistability or dy- 333 

namic bifurcation. 334 

The results shown in Fig. 6 constitute the basis for further dis- 335 

cussion because they suggest that bifurcations or bistabilities on 336 

financial markets can exist. Thus, they validate considering the tra- 337 

jectory of x ∗( t ) as extrema (minima or maxima) of a hypotheti- 338 

cal ’mechanical’ potential curve (drawn in the third dimension, i.e. 339 

along the third (vertical) additional axis which can be attached to 340 

plots (a), (b), and (c) in Fig. 6 ). 341 

3. Mechanical-like view 342 

Following the article by [19] and by using basic results pre- 343 

sented in Fig. 6 , we provide a quantitative description founded on 344 

the mechanical-like picture of a ball moving in the potential land- 345 

scape. We consider snapshot pictorial views of different states of 346 

the system on the pathway to regime change illustrated by a se- 347 

quence of properly chosen Figs. 7–11 . This pathway is defined by 348 

dependence x ∗ = x ∗(P ) , where the driving (hidden) parameter P is, 349 

by definition, a slowly-varying function of time (see Appendix C for 350 

a detailed expression). The point x ∗ is a root of equation f (x ; P ) = 0 351 

– see the respective zeros 1, 1 ′ or/and 1 ′ ′ shown (by small black 352 

circles) in the upper plots (a) of the force f ( x ; P ) vs. x in Figs. 7–10 , 353 

and also the sequence of points 1, 1 ′ and 1 ′ ′ (white circles) present 354 

in the summary of Fig. 11 . In the middle plots (b) the potential U ( x ; 355 

P ) vs. x is shown, indicating that the points 1, 1 ′ ′ are stable, while 356 

point 1 ′ is unstable. Finally, in the bottom plots (c), the equilibrium 357 

probability distribution, Pr ( x ; P ) given by Eq. (B.5) is shown ver- 358 

sus x . Figs. 8 and 9 show the most significant results of our work, 359 

namely both a bifurcation (cf. Fig. 8 ) and a catastrophic bifurcation 360 

(cf. Fig. 9 ) observed in empirical financial time series. 361 

Let us examine the pathway to regime change with greater care. 362 

When time increases, the system passes successive states defined 363 

by the values of x ∗, well pronounced in Fig. 6 . The initial character- 364 

istic state defined by a single value of x ∗ is shown in Fig. 7 . It rep- 365 

resents the region ahead of the bifurcation. The central objective of 366 

interest to us is defined in Fig. 8 by the three different values of x ∗. 367 

The borders of the bifurcation region, limited by tipping points, are 368 
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denoted in the plots in Fig. 6 by the character ‘x’. The arrows show 369 

the possible transitions between the equilibrium points. The third, 370 

extremely interesting case of the catastrophic bifurcation transition 371 

is presented in Fig. 9 . For this case, the points 1 ′ and 1 ′ ′ coincide. 372 

The point x ∗
1 ′′ is represented in Fig. 6 by the second character ‘x’. 373 

In this case, the possible transition between the points 1 ′ ′ and 1 374 

is shown schematically by the arrow in Fig. 11 . The last (fourth) 375 

case, illustrated by Fig. 10 , is similar to the first one, as again it is 376 

defined by a single root, namely by 1. 377 

Notably, the two segments of the folded backward curve x ∗( P ) 378 

containing the points 1 and 1 ′ ′ (cf. Fig. 11 ) represent stable equi- 379 

libria, while the third backward segment in between, containing 380 

the points of the 1 ′ type, represents an unstable equilibrium. If the 381 

system is driven slightly away from the stable equilibrium it will 382 

return to this state with the relaxation time τ (P ) = −1 /λ(P ) (cf. 383 

considerations in Appendix B in particular Eq. (B.9) ). Otherwise, 384 

the system driven from the unstable equilibrium will move away 385 

(to one of the two stable equilibria). In fact, the backward seg- 386 

ment of the curve x ∗( P ) (denoted by the dashed backward curves 387 

in the plots in Fig. 6 ) represents a border or a repelling threshold 388 

between the corresponding basins of attraction of the two alter- 389 

native stable states (defined by the lower and the upper branches 390 

of the backward-folded curves, marked in the same figures by the 391 

solid curves). 392 

In this work, we focus mainly on the analysis of stable equilib- 393 

ria. Two of them are the tipping points at which a tiny perturba- 394 

tion (spontaneous or systematic) can produce a sudden large tran- 395 

sition (indicated, e.g. for the second tipping point, by a long arrow 396 

in Fig. 11 ). It should be noted that only in the vicinity of the stable 397 

equilibria, that is for the points placed on the lower or the upper 398 

branches of the folded curve, the variance of the detrended time 399 

series diverges according to a power-law (cf. Expression (B.11) in 400 

Appendix B ). This is a direct consequence of the catastrophic slow- 401 

ing down (CSD), which can be well detected before the actual oc- 402 

currence of the catastrophic transition. This divergence can be in- 403 

tuitively understood as follows. As the return time diverges, the 404 

impact of a shock does not decay (see solution Eq. (B.9) ), and its 405 

accumulating effect increases the variance. Hence, CSD reduces the 406 

ability of the system to follow the fluctuations [53] . 407 

We explain in this Section how indicators (or early warnings) 408 

arise when the system approaches the regime shift or the catas- 409 

trophic bifurcation transition (threshold). It is sufficient to consider 410 

the linear early warnings such as variance, recovery time, reddened 411 

power spectra and related quantities in the framework of the lin- 412 

earized theory defined by Eqs. (B.6) and (B.7) . It is convenient to 413 

consider the nonlinear indicators (such as a non-vanishing skew- 414 

ness) by the approach based on the nonlinear and asymmetric part 415 

of the force f ( x ; P ) (present in the first equality in (B.1) ) and on 416 

its asymmetric potential U ( x ; P ) (present in the second equality 417 

in (B.1) ), both in the immediate vicinity of the regime shift – cf. 418 

plots in Fig. 9 concerning the case at the catastrophic bifurcation 419 

threshold. 7 This is one of the simplest viewpoints considered, for 420 

instance, in the article by Guttal and Jayaprakash [19] . 421 

4. Concluding remarks 422 

Following the supposition in [34] concerning the possibility of 423 

the existence of bifurcation transitions, in particular catastrophic 424 

ones, on financial markets, we have studied the principal and most 425 

significant indicators of such transitions on stock exchanges of 426 

small and mid to large capitalisations. Other indicators (not visual- 427 

ized in this work) relating to properties of noise also confirm this 428 

7 Notably, the upper plot indicates that the maximal value of discontinuity of the 

recovery rate −λ should exist at the bifurcation threshold. However, this value is 

too small to be recognized (as statistical errors are too large); cf. plots in Fig. 5 . 

supposition. All these indicators consistently show that the thresh- 429 

olds presented in Figs. 3, 5, 6 , and 9 should be identified as signa- 430 

tures of a catastrophic bifurcation transition. It was a noteworthy 431 

surprise in our analysis that the catastrophic bifurcation threshold 432 

itself constitutes a consistent indicator in daily empirical data ob- 433 

tained from various stock exchanges. As we have observed, such a 434 

threshold – serving as an early indicator – is noticeable for several 435 

months before the global crash. 436 

The basic results of this work consist of the well-established ob- 437 

servations that: (i) λ is a negative quantity, and (ii) recovery rate 438 

−λ vanishes when the system approaches the catastrophic bifurca- 439 

tion threshold (cf. Fig. 5 ). This vanishing effect (together with the 440 

result mentioned below, concerning the shift parameter b ) permits 441 

us to formulate the hypothesis that the underlying phenomenon is 442 

a catastrophic (but not critical) slowing down. The significance of 443 

this result is furthermore underlined by the fact that λ is a funda- 4 4 4 

mental quantity which (as we are able to prove) enters all other 445 

linear indicators and also participates in non-linear ones. 446 

Apart from λ, we have also identified the shift parameter b 447 

(cf. Fig. 4 and, in particular, the insert figure presented there). 448 

Hence, we have been able to present an empirical trajectory con- 449 

sisting of fixed points x ∗ plotted vs. trading time t , and directly 450 

observe the catastrophic bifurcation transition preceded by the 451 

flickering phenomenon (cf. plots in Figs. 6 ). Furthermore, we have 452 

found that each catastrophic bifurcation transition is preceded by 453 

a singularity-like anti-peak, which appears to be a super-extreme 454 

event (see again the plots in Figs. 6 ). As a consequence, we have 455 

been able to construct a mechanical-like view of the bifurcation 456 

transitions, resulting in a bimodal shape of the (unconditional) 457 

equilibrium statistics 8 (see Figs. 8 and 9 for details). 458 

Our contribution opens possibilities for numerous applications, 459 

for instance for forecasting, market risk analysis and financial mar- 460 

ket management. In addition, the approach stimulating our present 461 

work is derived in part from ecology [19,53,55,57] , where some- 462 

times an ecosystem undergoes a catastrophic regime shift (in the 463 

sense of the Réne Thom catastrophe theory [19] over a relatively 464 

short period of time. Hence, this opens the possibility for the 465 

methodological elements of our work to be applicable in such do- 466 

mains. Nevertheless, a word of warning is in place here, as one can 467 

easily deceive oneself by seeing deterministic dynamics at work 468 

in random data with a certain structure, as demonstrated for ex- 469 

ample in [36] . Criteria for validating the emergent nature of such 470 

structures can prevent this kind of over-interpretation, and devis- 471 

ing such criteria constituted the main goal of this work. 472 

Uncited references 473 

Refs. [12,17,26,30,31,61,62] . 474 

Acknowledgments 475 

We are grateful to Piotr Suffczy ́nski for stimulating discussions. 476 

T.G., T.R.W., and R.K. acknowledge partial financial support from 477 

the Polish Grant No. 119 awarded in the First Competition of the 478 

Committee of Economic Institute, organized by the National Bank 479 

of Poland. 480 

Appendix A. Detrending procedure 481 

In order to model the long-term trend of the time series pre- 482 

sented in Fig. 1 , we used the following relaxation function of 483 

8 We can say that this observation is seen even better for WIG and DJIA than for 

DAX. 
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Table A.1 

Values of fit parameters of the trend for WIG bull 

market ( R 2 = 0 . 9986 ). 

Parameter Value Standard deviation 

t c 892 [ td ] 73 [ td ] 

τ 105 [ td ] 420 [ td ] 

α 0.57 0.23 

ω 0 . 0041 [ td −1 ] 0 . 0 0 05 [ td −1 ] 

�ω 0.0 0.0 

Table A.2 

Values of fit coefficients of the trend for WIG bull 

market ( R 2 = 0 . 9986 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 60081 85273 

X 1 −8659 2352 

Table A.3 

Values of fit parameters of the trend for WIG bear 

market ( R 2 = 0 . 9985 ). 

Parameter Value Standard deviation 

t c 810 [ td ] 0 [ td ] 

τ 272 [ td ] 20 [ td ] 

α 1.562 0.025 

ω 0 . 0431 [ td −1 ] 0 . 0 0 05 [ td −1 ] 

�ω 0.0065 0.0 0 04 

Table A.4 

Values of fit coefficients of the trend for WIG bear 

market ( R 2 = 0 . 9985 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 41963 334 

X 1 −2528 269 

Table A.5 

Values of fit parameters of the trend for DAX bull mar- 

ket ( R 2 = 0 . 9985 ). 

Parameter Value Standard deviation 

t c 969 [ td ] 1 [ td ] 

τ 426 [ td ] 391 [ td ] 

α 0.52 0.03 

ω 0 . 00362 [ td −1 ] 0 . 0 0 0 04 ; [ td −1 ] 

�ω 0.0065 0.0 0 04 

time t : 484 

X (| t − t c | ) = (X 0 + X 1 ) E α

(
−
( | t − t c | 

τ

)α)
−X 1 cos (ω | t − t c | ) cos (�ω | t − t c | ) , 
X 0 , α, τ, t c > 0 , (A.1) 

separately valid both for the bullish and the bearish sides of a 485 

given well-formed market bubble. (Predictions of Formula (A.1) are 486 

shown in Fig. 1 using solid lines.) Here, we have ω, �ω � 1, as 487 

this is required in the theoretical derivation of the above equation; 488 

see [28] for details. All the parameters with the corresponding fit- 489 

ted values are listed in Tables A .1–A .12 . 490 

The Mittag-Leffler function E α( . . . ) is defined as follows [40] : 491 

E α

(
−
( | t − t c | 

τ

)α)
= 

∞ ∑ 

n =0 

(−1) n 

�(1 + αn ) 

( | t − t c | 
τ

)αn 

. (A.2) 

Here t c denotes the localization of the turning point where the 492 

market changes its state from bullish to bearish, τ plays the role 493 

of the relaxation time of the order of one year, and α is the shape 494 

Table A.6 

Values of fit coefficients of the trend for DAX bull 

market ( R 2 = 0 . 9985 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 4698 82 

X 1 −763 35 

Table A.7 

Values of fit parameters of the trend for DAX bear 

market ( R 2 = 0 . 9977 ). 

Parameter Value Standard deviation 

t c 968 [ td ] 0 [ td ] 

τ 426 [ td ] 72 [ td ] 

α 1.12 0.03 

ω 0 . 0089 [ td −1 ] 0 . 0 0 01 ; [ td −1 ] 

�ω 0.0246 0.0 0 01 

Table A.8 

Values of fit coefficients of the trend for DAX bear 

market ( R 2 = 0 . 9977 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 5464 70 

X 1 −847 36 

Table A.9 

Values of fit parameters of the trend for DJIA bull 

market ( R 2 = 0 . 9996 ). 

Parameter Value Standard deviation 

t c 627 [ td ] 3 [ td ] 

τ 333 [ td ] 38 [ td ] 

α 1.29 0.02 

ω 0 . 0107 [ td −1 ] 0 . 0 0 02 ; [ td −1 ] 

�ω 0.0220 0.0 0 02 

Table A.10 

Values of fit coefficients of the trend for DJIA bull 

market ( R 2 = 0 . 9996 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 3486 40 

X 1 −332 28 

Table A.11 

Values of fit parameters of the trend for DJIA bear 

market ( R 2 = 0 . 9971 ). 

Parameter Value Standard deviation 

t c 640 [ td ] 0 [ td ] 

τ 165 [ td ] 191 [ td ] 

α 1.938 0.575 

ω 0 . 030 [ td −1 ] 0 . 070 ; [ td −1 ] 

�ω 0.040 0.070 

exponent. All the values of parameters and coefficients describing 495 

this function for indexes of WIG, DAX, and DJIA bull markets and 496 

bear markets are listed in the Tables. A .1–A .12 . Notably, the coeffi- 497 

cient of determination, R 2 , is in no case smaller than R 2 = 0 . 9971 . 498 

The value of R 2 close to 1 indicates that (A.1) is a properly selected 499 

trend. However, such a selection does not exclude the possibility of 500 

the existence of a deterministic drift component in the detrended 501 

time series. We model the detrended time series entailing this 502 

component together with the additive noise in Appendix B . This 503 

is done using the first-order difference equation of the stochastic 504 

dynamics (B.1) , and in particular, locally in the vicinity of a fixed 505 

point using Eq. (B.7) . 506 
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Table A.12 

Values of fit coefficients of the trend for DJIA bear 

market ( R 2 = 0 . 9971 ). 

Parameter Value [p] Standard deviation [p] 

X 0 + X 1 4010 110 

X 1 −866 81 

The trend function (A.1) consists of two different com po- 507 

nents: (i) the main component based on the Mittag-Leffler func- 508 

tion monotonically increasing for t ≤ t c and monotonically de- 509 

creasing in the opposite case, and (ii) the higher-order oscillat- 510 

ing component (the amplitude X 1 of which is of the order of 10% 511 

of the amplitude of the main component X 0 + X 1 ). As required, 512 

the trend function obtained in this way mainly exhibits the long- 513 

term slowly-varying super-exponential growth, which precedes the 514 

speculation-induced crash. 515 

The trend we use is a function that we derived earlier as a rhe- 516 

ological model of fractional dynamics of financial markets ( [28] ). 517 

This model introduces the hypothesis that stock markets behave 518 

like a viscoelastic biopolymer. That is, they are elastic (i.e., they 519 

immediately respond) if the impact of an external force on a stock 520 

market is sufficiently strong. But they are more like a liquid (plas- 521 

tic) material in the case of a weak external force. That is, financial 522 

markets behave analogically to a non-Newtonian liquid. 523 

Among the fit parameters and coefficients for a given index (see 524 

Tables. A .1–A .12 ), there always exists at least one (characterizing 525 

the bull market or bear market) which is burdened by a large stan- 526 

dard deviation. In this way the system is protected from arbitrage. 527 

Appendix B. Catastrophic slowing down 528 

In this Appendix, we consider linear indicators of the catas- 529 

trophic slowing down or regime shift such as: (i) recovery rate and 530 

time, (ii) variance, and (iii) reddened power spectra. 531 

Let us suppose that detrended time-dependent time series 532 

x t 
def . = X(t) − Trend (t) , where Trend( t ) is the trend expressed by Eq. 533 

(A.1) , obeys the first-order difference equation of the stochastic dy- 534 

namics 535 

x t+1 − x t = f (x t ; P ) + η t = −∂U(x t ; P ) 

∂x t 
+ ηt , (B.1) 

where U plays the role of a mechanical potential, the additive 536 

noise or stochastic force η t , t = 0 , 1 , 2 , . . . , is a δ-correlated 

9 (0, 537 

σ 2 ) random variable. P is a slowly varying driving (control, in gen- 538 

eral a vector) parameter, the precise definition of which is given in 539 

Appendix C . 540 

In the spirit of the time dependent Ginzburg-Landau theory of 541 

phase transition ( [55] ), we can assume that the potential U ( x ; P ) 542 

is a polynomial of the fourth-order (hence, force f is a polynomial 543 

of the third-order, cf. Appendix C ). Now, our goal is to determine 544 

coefficients of this polynomial from the properly detrended empir- 545 

ical data. For instance, in Figs. 7–10 plots of force f , in potential U , 546 

and equilibrium probability Pr vs. detrended time series (variable) 547 

x are already shown (using solid lines) for different values of pa- 548 

rameter P . Furthermore, in the comprehensive Fig. 11 , the plots of 549 

f are grouped into a three-dimensional visualisation. 550 

Our goal is to utilize potential U ( x ; P ) in the construction of an 551 

unconditional equilibrium distribution, Pr ( x ; P ), of the detrended 552 

time series and present how both quantities evolve across bistable 553 

9 Here, δ is the Kronecker delta, while t indexes trading days within a given trad- 

ing month (consisting of twenty-one trading days). The trading month is our time 

window, where λ is approximately constant. 

forms. This will provide a signature of a genuine (and not spurious 554 

or artificial) bifurcation transition. 555 

B1. Equilibrium distribution of detrended time series 556 

The differential formulation directly results from Eq. (B.1) . Its 557 

basic ingredient is the Langevin dynamics [55,60] , taking the form 558 

of the massless stochastic dynamic equation 559 

∂x t 

∂t 
= −∂U(x t ; P ) 

∂x t 
+ ηt . (B.2) 

This equation is equivalent to the quasilinear (according to van 560 

Kampen’s terminology, [60] ) Fokker-Planck equation 561 

∂P r(x, t; P ) 

∂t 
= −∂ j(x, t; P ) 

∂x 
, (B.3) 

which is a form of the continuity equation (a conservation law) for 562 

the probability density of the current, i.e. the detrended time series 563 

Pr ( x , t ; P ), where the current density is given by the constitutive 564 

equation 565 

j(x, t; P ) = f (x ; P ) P r(x, t; P ) − σ 2 

2 

∂P r(x, t; P ) 

∂x 
. (B.4) 

The equilibrium (time-independent) solution of Eq. (B.3) (ob- 566 

tained directly from the requirement that no current is present in 567 

the system, (i.e. by assuming that j(x, t) = 0 in Eq. (B.4) ) is given 568 

by 569 

P r(x ; P ) ∼ 2 

σ 2 
exp 

(
− 2 

σ 2 
U(x ; P ) 

)
, (B.5) 

where potential U ( x ; P ) already appeared in Eqs. (B.1) and (B.2) . 570 

The long-term, slowly-varying evolution of the above given dis- 571 

tribution shown in Figs. 7–10 as U ( x ; P ) versus P was found from 572 

empirical data (see Appendix C for details). Indeed, the uncondi- 573 

tional equilibrium distribution (B.5) exhibits the expected bistable 574 

shape slightly before (see Fig. 8 ) and at the catastrophic bifurcation 575 

transition, that is within the bifurcation region (see Fig. 9 ). 576 

B2. Analysis of the linear stability 577 

In this section, we study the linear stability of the equilibrium, 578 

that is we consider the relaxation of the system which was slightly 579 

knocked out of equilibrium [63] . The equilibrium of the system is 580 

defined by the roots (or fixed points) of the function f ( x ; P ). In 581 

Sec. 3 , we argue that these roots can be viewed as the mechanical- 582 

like equilibria. 583 

The linear expansion of f ( x ; P ) at the fixed point x ∗, gives 584 

y t+1 − y t = f (x ∗(P ) ; P ) + λ y t + η t = λ y t + η t 

⇔ y t+1 = AR (1) y t + η t (B.6) 

as, by the definition of a root, f ( x ∗( P ); P ) vanishes. We will 585 

use the following notation: (i) for the displacement from an 586 

equilibrium 

10 or the (non-normalized) order parameter y t = x t − 587 

x ∗(P ) , t = 0 , 1 , 2 , . . . , and (ii) for rate λ(x ∗(P ) ; P ) = 

∂ f (x ;P) 
∂x 

| x = x ∗(P) . 588 

The autoregressive coefficient of the first-order AR (1) = 1 + λ. 589 

The formula in the second line of Eq. B.6 , rewritten in the 590 

form 591 

x t+1 = (1 + λ) x t + b + η t , b(= A (0)) = −λ x ∗, (B.7) 

592 

10 The set of variables y t , t = 0 , 1 , 2 , . . . , is also called the first-order autoregres- 

sive time series. 
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makes it possible to obtain the recovery rate −λ(> 0) and fixed 593 

point x ∗ vs. trading days from the fits to empirical data represented 594 

by successive sample regression plots, such as shown, for instance, 595 

in Fig. 4 . 596 

Each plot in this figure consists of 20 points of daily observa- 597 

tions (i.e. covering a single month) at the closing, which appears to 598 

be the optimal number for observing the slowing down to zero of 599 

the recovery rates shown in the plots in Fig. 5 11 with a satisfactory 600 

resolution. The error bar of each individual point placed in these 601 

plots comes from the above-mentioned fits as a standard deviation 602 

of the straight line slope. (The corresponding points without er- 603 

ror bars were found independently from Expression (1) ). Obviously, 604 

these fits also give the straight line shift b vs. trading days. The 605 

resulting combined quantity −b/λ is presented in plots in Fig. 6 606 

vs. trading days. We obtain a surprisingly small statistical error for 607 

these fits. However, we tacitly assumed that coefficients λ and b 608 

were slowly-varying functions of trading days. These fits constitute 609 

the empirical basis for our further considerations. 610 

The solution of Eq. (B.6) is 611 

y t = (1 + λ) t y 0 + (1 + λ) t−1 
t−1 ∑ 

τ=0 

ητ (1 + λ) −τ

≈ exp (λt) 

[
y 0 + 

∫ t 

0 

ητ exp (−λτ ) dτ

]
(B.8) 

and (as 〈 ητ 〉 = 0) its average 612 

〈 y t 〉 = (1 + λ) t y 0 ≈ exp (λt) y 0 , (B.9) 

where the first equality in (B.8) is valid for t ≥ 1 (for t = 0 the so- 613 

lution y t=0 = y 0 ). The second approximate equality in (B.8) is valid 614 

solely for the case of | λ| � 1 and t 
 1, that is for the immediate 615 

vicinity of the threshold (shown in Figs. 2, 3 , and 5 by the vertical 616 

dashed straight lines) and for a sufficiently long time. 617 

From Eq. (B.9) , it follows that a given equilibrium state is stable 618 

(i.e., 〈 y t → ∞ 

〉 → 0 for y 0 � = 0 and 〈 y t 〉 = 0 for y 0 = 0 ) if and only 619 

if 12 | 1 + λ | < 1 ⇔ −2 < λ < 0 ; otherwise it is unstable. Hence, the 620 

local minima of the potential curve (e.g., points 1 and 1 ′ ′ in the 621 

bottom plot in Fig. 8 ) define stable equilibria, while the local max- 622 

imum of the potential curve (e.g., point 1 ′ again in the bottom plot 623 

in Fig. 8 ) define the unstable equilibrium. The most relevant states 624 

of the system are stable equilibrium points x ∗
1 

and x ∗
1 ′′ shown in 625 

Fig. 9 and in Fig. 11 (where they are connected by the arrow), as 626 

they define the border of the bifurcation region. Hence, they are 627 

referred to as the catastrophic bifurcation points or tipping points. 628 

The quantity τ
def . = −1 /λ can be interpreted as the relaxation (re- 629 

covery or return) time solely for the stable (mechanical) equilibria. 630 

This is the characteristic time for the system to return to the equi- 631 

librium state after being knocked out of it. 632 

B3. Generic properties of the first-order autoregressive time series 633 

It is well-known [7,16] that particularly useful quantities, i.e. 634 

variance, covariance and autocorrelation function, as well as the 635 

power spectrum, are related. We calculate them by exploiting an 636 

exact solution given by the first equality in (B.8) . 637 

Firstly, we calculate the covariance, 638 

Cov (y t y t+ h ) = 〈 y t y t+ h 〉 − 〈 y t 〉 〈 y t+ h 〉 = (1 + λ) | h | V ar(y t ) = 

Cov (x t x t+ h ) = (1 + λ) | h | V ar(x t ) 

11 This figure is the result of the linear transformation ( 1 + λ ⇒ −λ) of Fig. 5 . The 

empirical data points in Fig. 5 are credible, as they come from two independent 

sources, providing mutually consistent results. 
12 We observed that for our empirical data a more restrictive inequality −1 < λ < 

0 is obeyed. 

⇔ AC F (h ) = 

C ov (y t y t+ h ) 
V ar(y t ) 

= 

C ov (x t x t+ h ) 
V ar(x t ) 

= (1 + λ) | h | 

⇒ ACF (h ) ≈ exp (λ | h | ) , h = 0 , ±1 , ±2 , . . . , (B.10) 

where variance Var ( y t ) is given (after straightforward calculations) 639 

by the formula 640 

V ar(y t ) = 

〈
y 2 t 

〉
− 〈 y t 〉 2 = V ar(x t ) 

= V ar(y 0 )(1 + λ) 2 t − 1 

λ(2 + λ) 

[
1 − (1 + λ) 2 t 

]
σ 2 , (B.11) 

where the notation 〈 . . . 〉 denotes an average over the noise and the 641 

initial conditions (within the statistical ensemble of solutions y t 642 

given by Eq. (B.8) ). The resultant equality in (B.10) is obeyed for | λ| 643 

� 1. Furthermore, at a short-time limit, i.e., for 2 t � N 

−1 , Var ( y t ) 644 

simplifies into the form 645 

V ar(y t ) ≈ V ar(y 0 )(1 + 2 λt) + tσ 2 ≈ V ar(y 0 ) + σ 2 t. (B.12) 

For the asymptotic time limit, i.e., for t → ∞ , Eq. (B.11) reduces 646 

(for fixed λ) to the form 647 

V ar(y t ) ≈ − σ 2 

λ(2 + λ) 
, (B.13) 

which diverges for vanishing λ. We hypothesise that by taking into 648 

account the flickering phenomenon we will obtain a significant in- 649 

crease in the variance within the bifurcation region. In general, 650 

the analytical calculation of variance requires the solution of the 651 

nonlinear Eq. (B.1) for f , given, in our case, by the polynomial (de- 652 

fined further in the text by Eq. (C.2) ), which remains an unsolved 653 

challenge. 654 

The coefficient 1 + λ (present, for instance, in (B.10) ) is the lag- 655 

1 autocorrelation function, which can be found directly from the 656 

empirical data (cf. Fig. 5 ). Apparently, it does not depend on the 657 

variance. 658 

It can be easily proven by using Solution (B.8) that any odd mo- 659 

ment of the variable y t asymptotically vanishes. Hence, from Eq. 660 

(B.11) , we find that within the linear theory, the skewness also 661 

vanishes. 662 

Furthermore, it can be easily verified (by using Solution (B.8) ) 663 

that the excess kurtosis vanishes if variables y 0 and η t are drawn 664 

from some Gaussian distributions. That is, within the scope of the 665 

linear theory (i.e. in the vicinity of the threshold) the distribu- 666 

tion of variable y t can be Gaussian, of variance given by Expression 667 

(B.11) and centred around the mean value 〈 y t 〉 = y 0 (1 + λ) t . 668 

Appendix C. Approximation of force f by the third- order 669 

polynomial 670 

Let us assume that the potential U , used in Eq. (B.1) , is defined 671 

by the fourth-order polynomial 672 

U(x ; P ) = A 0 x 
4 + A 1 x 

3 + A 2 x 
2 + A 3 x + A 4 , (C.1) 

where A l , l = 0 , 1 , . . . , 4 , are its real coefficients related to the 673 

(combined) parameter P – this relation is considered further in this 674 

Section. Moreover, we can assume that the coefficient A 0 > 0. This 675 

is dictated by the empirical data shown in Fig. 6 , where the se- 676 

quence of states (roots) x ∗
1 ′′ and x ∗

1 
placed respectively on the up- 677 

per and lower segments of the backward folded curves are con- 678 

sidered as the stable (mechanical) equilibrium states. Both these 679 

roots have opposite signs, which results in the corresponding signs 680 

of the coefficients. 681 

According to the definition of potential (see Eq. (B.1) ), force f is 682 

a polynomial of one order of magnitude lower 683 

f (x ; P ) = a 0 x 
3 + a 1 x 

2 + a 2 x + a 3 , (C.2) 

here coefficients a 4 −l = −l A 4 −l , l = 1 , . . . , 4 , where a 0 < 0. 684 
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Below, we consider following characteristic cases: (a) the catas- 685 

trophic bifurcation transition at catastrophic bifurcation threshold 686 

(regarding Fig. 9 ), (b) the transition before the catastrophic bifurca- 687 

tion transition (but within bistable region regarding Fig. 8 ), (c) the 688 

transition present after it (regarding Fig. 10 ) , and (d) the analo- 689 

gous transition present before the bistable region (regarding Fig. 7 ). 690 

The aim of this Section is to express the coefficients of the poly- 691 

nomial (C.2) in terms of the roots of this polynomial. These roots 692 

can be easily extracted from empirical data shown in Fig. 6 . Us- 693 

ing these coefficients, we are able to plot the force and potential 694 

curves (see Figs. 7–10 for details) and give a mechanical interpre- 695 

tation to the catastrophic bifurcation transition. 696 

C1. Case of the catastrophic bifurcation transition 697 

Let us focus on the case (a) (presented in Fig. 9 ) concerning 698 

the catastrophic bifurcation transition. This means that the coeffi- 699 

cients a l , l = 0 , . . . , 3 , should provide a corresponding parameteri- 700 

sation, which results in a curve f ( x ; P ) vs. x in the form shown in 701 

Fig. 9 . (We relate these coefficients to the parameter P at the end 702 

of this Section.) 703 

Now, we can provide the detailed goals of this case. They are as 704 

follows: 705 

(i) derivation of the root x ∗
1 

and twofold root x ∗
1 ′′ of the polynomial 706 

(C.2) and hence calculation, for instance, of the catastrophic bi- 707 

furcation jump, �x ∗
1 , 1 ′′ = x ∗

1 ′′ − x ∗
1 
, as a function of polynomial 708 

coefficients, 709 

(ii) the solution of the inverse problem, that is derivation of the 710 

relative parameters a 1 / a 0 , a 2 / a 0 , and a 3 / a 0 by means of roots x ∗
1 

711 

and x ∗
1 ′′ , which can be obtained from the empirical data shown 712 

in Fig. 6 . 713 

Notably, the catastrophic bifurcation transition 1 ′ ′ ⇒ 1 (cf. the 714 

upper plot in Fig. 9 and the transition denoted by the arrow in 715 

Fig. 11 ) beginning at the point 1 ′ ′ – which is not only the largest 716 

(twofold) root of polynomial f but it also provides the position of 717 

its local maximum; hence, it is an inflection point of the curve U 718 

vs. x (cf. upper and middle plots in Fig. 9 ). Considering the canon- 719 

ical representation 720 

1 

a 0 
f (x ; P ) = (x − x ∗1 )(x − x ∗1 ′′ ) 

2 , (C.3) 

and utilizing Eq. (C.2) , we obtain 721 

∂ f (x ; P ) 

∂x 
| x = x 0 , x ∗

1 ′′ = 0 ⇔ 3 x ∗ 2 
0 , 1 ′′ + 2 

a 1 
a 0 

x ∗0 , 1 ′′ + 

a 2 
a 0 

= 0 , 

⇔ x ∗1 = 

1 

2 

(3 x ∗0 − x ∗1 ′′ ) , (C.4) 

where x ∗
0 

is the first inflection point of the curve U vs. x (see the 722 

middle plot in Fig. 9 ) and it is the local minimum of the curve f vs. 723 

x (see the upper plot in Fig. 9 ). However, this point is not explicitly 724 

shown there. 725 

From Eqs. (C.4) and Eq. (C.3) , we obtain 726 

x ∗0 , 1 ′′ = x f 
ip 

∓ 1 

3 

√ 

D , D 

def . = 

(
a 1 
a 0 

)2 

− 3 

a 2 
a 0 

, 

x ∗1 = x f 
ip 

− 2 

3 

√ 

D , (C.5) 

where for the first upper equation sign − represents the location of 727 

the minimum x ∗
0 
, the sign + represents the location of the root x ∗

1 ′′ , 728 

and we assumed D > 0 as both real roots of Eq. (C.4) should exist. 729 

Besides, we can easily derive (from the vanishing of the second 730 

derivative f over x ) that x 
f 
ip 

, present in (C.5) , is the inflection point 731 

of f (cf. the upper plot in Fig. 9 ), 732 

∂ 2 f (x ; P ) 

∂x 2 
| 
x = x f 

ip 

= 0 ⇔ x f 
ip 

= −1 

3 

a 1 
a 0 

. (C.6) 

As follows from Eq. (C.5) , both extrema x ∗0 and x ∗
1 ′′ are located sym- 733 

metrically on either sides of the inflection point x ip . That is the 734 

position x ∗
0 

of the minimum is located on the left-hand side, while 735 

the position of the root x ∗
1 ′′ is on the right-hand side, both being 736 

at the same distance from the position of the inflection point. 737 

From Eqs. (C.5) , we obtain the catastrophic bifurcation jump in 738 

the form of 739 

�x ∗1 , 1 ′′ = 

√ 

D = 

1 

2 a 0 

∂ 2 f (x ; P ) 

∂x 2 
| x = x ∗

1 ′′ , (C.7) 

which can be easily determined from the curves plotted in Fig. 9 . 740 

Moreover, the latter equality means that taking into account the 741 

quadratic term in the expansion of (B.1) vs. x t could be a promis- 742 

ing approach. A step, based on empirical data, beyond the linear 743 

approximation utilized in the derivation of Eq. (B.6) , could provide 744 

more detailed information, e.g., concerning autocorrelation in the 745 

vicinity of the catastrophic bifurcation transition. 746 

From Eqs. (C.5) and (C.6) , we derive the solution of the inverse 747 

problem in the form, 748 

a 1 
a 0 

= −(2 x ∗1 ′′ + x ∗1 ) ≤ 0 , 

a 2 
a 0 

= x ∗1 ′′ ( x 
∗
1 ′′ + 2 x ∗1 ) ≥ 0 , (C.8) 

together with the constraint for the relative free parameter 749 

a 3 
a 0 

= −x ∗1 (x ∗1 ′′ ) 
2 ≥ 0 . (C.9) 

The latter relation makes the above procedure self-consistent. 750 

By identifying the roots x ∗
1 

= −101 . 17 and x ∗
1 ′′ = 278 . 92 from the 751 

empirical data shown in Fig. 6 (b) as the right tipping point and the 752 

one placed on the bifurcation threshold, respectively, we derive the 753 

relative parameters in question a 1 /a 0 = −456 . 67 , a 2 /a 0 = 21359 . 70 754 

and a 3 /a 0 = 7 . 870 6 6 × 10 6 . Thus, we obtained the unique values 755 

of parameters without any fitting routine, i.e. the parameters are 756 

not the fitting ones. In addition, the three inequalities given above 757 

lead to the following ones: a 1 ≥ 0, a 2 ≤ 0, a 3 ≤ 0. The bottom plots 758 

shown in Figs. 8–11 tacitly assume that the parameter P monoton- 759 

ically depends on time (counted on a monthly time scale) at least 760 

in the vicinity of the CBT. The vector parameter P consists, in our 761 

case, of only two independent components, e.g., x ∗1 and x ∗
1 ′′ . This is 762 

sufficient to perform stochastic simulation at the catastrophic tran- 763 

sition point. 764 

C2. Case of the bistable region 765 

The case considered here (i.e., the case represented by Fig. 8 ) is 766 

a generalisation of the one discussed in the subsection above. That 767 

is, we consider a variable x placed inside the bifurcation region, 768 

where three different real roots exist (cf. backward-folded curves 769 

shown in Fig. 6 and schematically shown in Fig. 11 ). 770 

The goal of this subsection is analogous to that considered 771 

above, i.e., to extract coefficients of the polynomial (C.2) by using 772 

its roots found from the empirical data (shown in the above men- 773 

tioned figures). By assuming that the polynomial (C.2) has three 774 

real different roots and by comparing Eq. (C.2) with its multiplica- 775 

tive form 

1 
a 0 

f (x ; P ) = 

(
x − x ∗

1 

)(
x − x ∗

1 ′ 
)(

x − x ∗
1 ′′ 

)
, we obtain the re- 776 

lations sought for the coefficients of the polynomial 777 

a 1 
a 0 

= −(x ∗1 ′′ + x ∗1 ′ + x ∗1 ) , 

a 2 
a 0 

= x ∗1 ′ x 
∗
1 ′′ + x ∗1 x 

∗
1 ′′ + x ∗1 x 

∗
1 ′ , 

a 3 
a 0 

= −x ∗1 x 
∗
1 ′ x 

∗
1 ′′ . (C.10) 

The equations above are a generalization of the corresponding Eqs. 778 

(C.8) and (C.9) , as we obtain these by inserting x ∗
1 ′ = x ∗

1 ′′ in Eqs. 779 

(C.10) . 780 
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Fig. 8 was constructed by using coefficients obtained from Eqs. 781 

(C.10) by introducing into their right-hand sides, the following em- 782 

pirical values of the roots: x ∗
1 

= −626 . 473 , x ∗
1 ′ = −488 . 308 , x ∗

1 ′′ = 783 

278 . 92 , taken, for instance, from the backward-folded curve shown 784 

in Fig. 6 (b). From (C.10) , we obtain the unique values of the 785 

relative parameters: a 1 /a 0 = 835 . 861 , a 2 /a 0 = −5022 . 94 , a 3 /a 0 = 786 

−8 . 53249 × 10 8 . Apparently, this situation is analogous to the pre- 787 

vious one (considered the above). 788 

C3. Case after the catastrophic bifurcation transition 789 

For this case (represented by Fig. 10 ), we have an insufficient 790 

amount of empirical data for a unique solution, as only a single 791 

real root x ∗1 can be identified (roots x ∗
1 ′ and x ∗

1 ′′ are the complex 792 

conjugates). Hence, we deal only with a single relation between 793 

the coefficients of the polynomial 794 

1 

a 0 
f (x ∗1 ; P ) = −( x ∗1 ) 

3 − a 1 
a 0 

( x ∗1 ) 
2 − x ∗1 

a 2 
a 0 

− a 3 
a 0 

= 0 , (C.11) 

which makes the ratio of the parameters a 3 / a 0 dependent on x ∗1 , 795 

a 1 / a 0 , and a 2 / a 0 . Therefore, the driving vector parameter can be 796 

defined as P = (x ∗
1 
, a 1 /a 0 , a 2 /a 0 ) , where relative parameters a 1 / a 0 797 

and a 2 / a 0 are free. For instance, in Fig. 10 we show plots for the 798 

root x ∗1 = −75 . 3875 , as well as the ratios of the parameters a 1 /a 0 = 799 

−456 . 67 , a 2 /a 0 = 41709 . 50 , and a 3 /a 0 = 6 . 1682 × 10 6 . 800 

C4. Case before the bistable region 801 

We deal with an analogous situation as given above if x is 802 

placed before the catastrophic bifurcation region and (simultane- 803 

ously) outside of the bistable region. Then, we are again dealing 804 

with a single real root, e.g., x ∗
1 ′′ = 421 . 009 , while the roots x 1 and 805 

x ∗
1 ′ are complex conjugates. For instance, in Fig. 7 we show plots 806 

for the ratios of the parameters a 1 /a 0 = 1179 . 81 , a 2 /a 0 = 278390 807 

and a 3 /a 0 = −4 . 00948 × 10 8 . 808 

Fortunately, the cases represented by Figs. 7 and 10 , and de- 809 

fined by two free relative parameters a 1 / a 0 and a 2 / a 0 , are not par- 810 

ticularly interesting because the regions concerned are outside the 811 

most interesting bistable regime. 812 

References 813 

[1] Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod 814 
Phys 2001;74:47–97. 815 

[2] . In: Albeverio S, Jentsch V, Kantz H, editors. Extreme events in nature and 816 
society. Berlin: Springer-Verlag; 2006. 817 

[3] Badii R, Politi A. Complexity. Hierarchical structures and scaling in physics. 818 
Cambridge: Cambridge Univ. Press; 1997. 819 

[4] Barunik J, Vosvrda M. Can a stochastic cusp catastrophe model explain stock 820 
market crashes? J Econ Dyn Control 2009;33:1824–36. 821 

[5] Bełej M, Kulesza S. Real estate market under catastrophic change. Acta Phys 822 
Pol 2013;123:497–501. 823 

[6] Brock WA, Carpenter SR, Scheffer M. Regime shifts, environmental signals, un- 824 
certainty and policy choice. In: Norberg J, Cumming G, editors. A theoretical 825 
framework for analyzing social-ecological systems. New York: Columbia Univ. 826 
Press; 2006. p. 180–206. 827 

[7] Brockwell PJ, Davis RA. Time series: theory and methods,. Berlin: Springer- 828 
Verlag; 1991. 829 

[8] Carpenter SR, Brock WA. Rising variance: a leading indicator of ecological tran- 830 
sitions. Ecol Lett 2006;9:308–15. 831 

[9] Carpenter SR, Brock WA, Cole JJ, Kitchell JF, Pace ML. Leading indicators of 832 
trophic cascaders. Ecol Lett 2008;11:128–38. 833 

[10] Chang G, Feigenbaum J. A bayesian analysis of log-periodic precursors to fi- 834 
nancial crashes. Quant Finance 2006;6:15–36. 835 

[11] Dorogovtsev SN, Goltsev AV, Mendes JFF. Critical phenomena in complex net- 836 
works. Rev Mod Phys 2008;80:1275–335. 837 

[12] Erdélyi A. Tables on integral transforms. I. In: Based in part, on notes left by H. 838 
Bateman and compiled by the staff of the Bateman manuscript project. New 839 
York: McGraw-Hill Book Comp. Inc.; 1954. 840 

[13] Fantazzini D, Geraskin P. Everything you always wanted to know about log- 841 
periodic power laws for bubble modelling but were afraid to ask. Eur J Finance 842 
2013;19:366–91. 843 

[14] Filimonov V, Sornette D. Spurious trend switching phenomena in financial 844 
markets. Eur Phys J B 2012;85(155/1-5). 845 

[15] Fry JM. Exogenous and endogenous market crashes as phase transitions in 846 
complex financial systems. EPJ B 85 2012;405. 847 

[16] Fuller WA. Introduction to statistical time series. Canada: J. Wiley & Sons, Inc.; 848 
1976. 849 

[17] Geweke J, Porter-Hudak S. The estimation and application of long-memory 850 
time series models. J Time Ser Anal 1983;4:221–37. 851 

[18] Gottinger H-W. Complexity and catastrophe, applications of dynamic system 

Q2 852 
theory. In: Kýn O, Schrettl W, editors. On the stability of contemporary eco- 853 
nomic systems: proceedings of the third Reisenburg Symposium. Vandenhoeck 854 
& Ruprecht; 1979. p. 422–38. 855 

[19] Guttal V, Jayaprakash C. Changing skewness: an early warning signal of regime 856 
shifts in ecosystems. Ecol Lett 2008;11:450–60. 857 

[20] Haldane AG, May RM. Systemic risk in banking ecosystems. Nature 858 
2011;469:351–5. 859 

[21] Hohenberg P, Halperin B. Theory of dynamic critical phenomena. Rev Mod 860 
Phys 1977;59:435–79. 861 

[22] Jakimowicz A. Catastrophes and chaos in business cycle theory. Acta Phys Pol 862 
A 2010;117:640–6. 863 

[23] Jiang SM, Cai SM, Shou T, Zhou PL. Note on two-phase phenomena in financial 864 
markets. Chin Phys Lett 2008;25(6):2319–22. 865 

[24] Johnson N. Proposing policy by analogy is risky. Nature 2011;469.302–302 866 
[25] Johnson NF, Hui PJ. Financial market complexity. Oxford: Oxford Univ. Press; 867 

2007. 868 
[26] Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge: Cambridge, 869 

Univ. Press; 20 0 0. 870 
[27] Paul W, Baschnagel J. Stochastic processes. From physics to finance. Berlin: 871 

Springer-Verlag; 1999. 872 
[28] Kozłowska M, Kasprzak A, Kutner R. Fractional market model and its verifica- 873 

tion on the warsaw stock exchange. Int J Mod Phys C 2008;19:453–69. 874 
[29] Kozłowska M, Kutner R. Singular dynamics of various macroeconomic sectors. 875 

Acta Phys Pol 2010;117:630–6. 876 
[30] Kubo R, Toda M, Hascitsume N. Statistical physics II. Nonequilibrium statistical 877 

mechanics. Berlin: Springer-Verlag; 1985. 878 
[31] Kutner R. Hierarchical spatio-temporal coupling in fractional wanderings. (i) 879 

continuous-time weierstrass flights. Physica A 1999;264:84–106. 880 
[32] Kutner R, Binder K, Kehr KW. Diffusion in concentrated lattice gases. v. par- 881 

ticles with repulsive nearest-neighbor interaction on the face-centered-cubic 882 
lattice. Phys Rev B 1983;28:1846–58. 883 

[33] Landau DP, Binder K. A guide to Monte Carlo simulations in statistical physics. 884 
Cambridge: Cambridge Univ. Press; 20 0 0. 885 

[34] Lux T. Network theory is sorely required. Nature 2011;469.303–303 886 
[35] Malevergne Y, Sornette D. Extreme financial risks. From dependence to risk 887 

management. Berlin: Springer-Verlag; 2006. 888 
[36] Mandelbrot B, Wallis J. Computer experiments with fractional gaussian noises. 889 

Water Resour Res 1969;5:228–67. 890 
[37] Mantegna RN, Stanley HE. An Introduction to econophysics. Correlations and 891 

complexity in finance. Cambridge: Cambridge Univ. Press; 20 0 0. 892 
[38] Matia K, Yamasaki K. Statistical properties of demand fluctuation in the finan- 893 

cial market,. Quant Finance 2005;5(6):513–17. 894 
[39] McSharry PE, Smith LA, Tarassenko L, Martinerie J, Quyen MLV, Baulc M, et al. 895 

Prediction of epileptic seizures: are nonlinear methods relevant? Nat Med, Lett 896 
Editor 2003;9(3):241–2. 897 

[40] Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a frac- 898 
tional dynamics approach,. Phys Rep 20 0 0;339:1–77. 899 

[41] Plerou V, Gopikrishnan P, Stanley HE. Two phase behaviour of financial mar- 900 
kets. Nature 2003;421:129–30. 901 

[42] Plerou V, Gopikrishnan P, Stanley HE. Two phase behaviour and the distribu- 902 
tion of volume. Quant Finance 2005;5:519–21. 903 

[43] Potters M., Bouchaud J.-P.. Comment on ”two-phase behavior of financial mar- 904 
kets. 2003. ArXiv.cond-mat/0304514v1. 905 

[44] Preis T. Econophysics: complex correlations and trend switchings in financial 906 
time series. Eur Phys J ST 2011;194(1):5–86. 907 

[45] Preis T, Schneider JJ, Stanley HE. Switching phenomena in financial markets. 908 
PNAS 2011;108(19):7674–8. 909 

[46] Preis T, Stanley HE. Switching phenomena in a system with no switches. J Stat 910 
Phys 2010;138(1-3):431–46. 911 

[47] Preis T, Stanley HE. Trend switching processes in financial markets. In: 912 
Takayasu M, Watanabe T, Takayasu H, editors. Econophysics approaches to 913 
large-scale business data and financial crisis. Tokyo: Springer-Verlag; 2010. 914 
p. 3–26. 915 

[48] Preis T, Stanley HE. Bubble trouble. Phys World 2011;24:29–32. 916 
[49] Preis T, Stanley HE. How to characterize trend switching processes in financial 917 

markets. Bull Asia Pacific Cent Theor Phys 20 09;23:18–23.20 09 918 
[50] Roehner BM. Patterns of speculation. A Study observational econophysics. 919 

Cambridge: Cambridge Univ. Press; 2002. 920 
[51] Rosser JB Jr. Implications for teaching macroeconomics of complex dynamics. 921 

Dept. Economics, James Madison Univ., Harrisonburg; 2004. 922 
[52] Schadschneider A, Chowdhury D, Nishinari K. Stochastic transport in complex 923 

systems. From molecules to vehicles. Amsterdam: Elsevier; 2011. 924 
[53] Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al. 925 

Early-warning signals for critical transitions. Nature 2009;461:53–9. 926 
[54] Sornette D. Why stock markets crash. Princeton and Oxford: Princeton Univ. 927 

Press; 2003. 928 
[55] Sornette D. Critical Phenomena in Natural Sciences. Chaos, fractals, selforgani- 929 

zation and disorder: concepts and tools. Springer series in synergetics. 2nd ed. 930 
Heidelberg: Springer-Verlag; 2004. 931 

Please cite this article as: M. Kozłowska et al., Dynamic bifurcations on financial markets, Chaos, Solitons and Fractals (2016), 

http://dx.doi.org/10.1016/j.chaos.2016.03.005 

http://dx.doi.org/10.1016/j.chaos.2016.03.005


M. Kozłowska et al. / Chaos, Solitons and Fractals xxx (2016) xxx–xxx 15 

ARTICLE IN PRESS 

JID: CHAOS [m5G; March 12, 2016;21:52 ] 

[56] Nawrocki D, Vaga T. A bifurcation model of market returns. Quant Finance 932 
2014;14(3):509–28. 933 

[57] Sornette D. Dragon-kings, black swans and the prediction of crises. Int J Ter- 934 
raspace Eng 2009;2:1–17. 935 

[58] Stanley HE, Buldyrev SV, Franzese G, Havlin S, Mallamace F, Kumar P, et al. 936 
Correlated randomness and switching phenomena. Physica A 2010;389:2880–937 
93. 938 

[59] Vandewalle N, Ausloos M, Boveroux P, Minguet A. Visualizing the log-periodic 939 
pattern before crashes,. Eur J Phys B 1999;9:355–9. 940 

[60] van Kampen NG. Stochastic processes in physics and chemistry. Amsterdam: 941 
North-Holland; 1987. 942 

[61] Weiss GH. A primer of random walkology. In: Bunde A, Havlin S, editors. Frac- 943 
tals in science. Berlin: Springer-Verlag; 1985. 944 

[62] Weron R. Estimating long-range dependence: finite sample properties and con- 945 
fidence intervals. Physica A 2002;312:285–99. 946 

[63] Wissel C. A universal law of the characteristic return time near thresholds, 65. 947 
Berlin: Oecologia; 1984. p. 101–7. 948 

[64] Zeeman EC. On the unstable behavior of stock exchanges. J Math Econ 1 949 
1974:39–49. 950 

[65] Zeeman EC. Catastrophe theory: selected papers, 1972-77. Bull Amer Math Soc 951 
(N S) 1978;84:1360–8. Errata, Bull. Amer. Math. Soc. (N. S. ) 1, 6 81–6 81 (1979) 952 

[66] Zeeman EC. Evolution of catastrophe theory. Understanding catastrophe,. Cam- 953 
bridge: Cambridge Univ. Press; 1992. 954 

[67] Zheng B, Qiu T, Ren F. Two-phase phenomena, minority games, and herding. 955 
Phys Rev E 2004;69(046115/1-6). 956 

Please cite this article as: M. Kozłowska et al., Dynamic bifurcations on financial markets, Chaos, Solitons and Fractals (2016), 

http://dx.doi.org/10.1016/j.chaos.2016.03.005 

http://dx.doi.org/10.1016/j.chaos.2016.03.005

